Molecular dynamics simulation of nanoscale distribution and mobility of water and dimethylmethylphosphonate in sulfonated polystyrene.
نویسندگان
چکیده
The interest in a better understanding of the specific interactions of phosphor-organic compounds and water with sulfonated polystyrene (sPS) is motivated by the use of block copolymers as protective membranes against chemical warfare agents. Using classical molecular dynamics simulations, we explored the nanoscale segregation and diffusion of water and nerve gas simulant dimethylmethylphosphonate (DMMP) in sPS neutralized with calcium counterions at different sulfonation and hydration levels. The water content was varied from 15 to 54% of dry polymer weight, and the DMMP content was varied from 0 to 100 wt %. We found that, in the 40% sulfonated polystyrene, water forms well defined aggregates, which grow in size as the hydration increases, reaching approximately 20 A at the maximum water content. In the 100% sulfonated polystyrene, the overall structure of hydrated polymer is more uniform with smaller water aggregates. Diffusion of water at the same number of water molecules per sulfonate group is faster at a lower sulfonation level. The solvation of sPS in water-DMMP binary mixtures was found to differ substantially from Nafion, where DMMP forms a layer between the hydropholic and hydrophobic subphases. In sPS with divalent Ca(2+) counterions, DMMP and water compete for the solvation of the sulfonate group. At high water and DMMP contents, the diffusion of DMMP turned out to be rather fast with a diffusion coefficient of ca. 30% of that of water. At the same time, water diffusion slows down as the DMMP concentration increases. This observation suggests that although sPS is permeable for both solvents, water and DMMP are partially segregated on the scale of 1-2 nm and have different pathways through the system. The nonuniform nanoscale distribution of water and DMMP in sPS is confirmed by analyses of different pair correlation functions. This feature may significantly affect the perm-selective properties of sPS-contained block copolymer membranes.
منابع مشابه
Molecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کاملSpecifics of solvation of sulfonated polyelectrolytes in water, dimethylmethylphosphonate, and their mixture: a molecular simulation study.
Sulfonated polyelectrolyte membranes (PEMs), such as Nafion and styrene-olefin block copolymers, are explored as permselective membranes for fuel cells as well as suitable barrier materials against chemical agents. The permselective properties of PEM are determined by their microphase segregation into hydrophilic and hydrophobic domains. We performed classical molecular dynamics simulations of ...
متن کاملMolecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model
We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...
متن کاملInvestigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation
In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...
متن کاملMolecular Dynamics Simulation of Water Transportation through Aquaporin-4 in Rat Brain Cells
This paper investigates the mechanism of water transportation through aquaporin-4(AQP4) of ratbrain cells by means of molecular dynamics simulation with CHARMM software. The AQP4 wasembedded into a bilayer made of Dimystroilphosphatylcholine (DMPC). The results illustrate thatwater molecules move through AQP4's channel with change of orientation of oxygen of eachwater molecule.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 112 47 شماره
صفحات -
تاریخ انتشار 2008